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ABSTRACT: Three concise enantioselective synthetic routes to the C17-C21 epoxyacid
segment of the azinomycins are presented and were based on a Sharpless asymmet-
ric epoxidation/kinetic resolution of racemic allylic alcohol (1)-3 that occurred with
reversal of the expected sense of enantioselection. © 1997 Elsevier Science Ltd.

Azinomycins A and B are antitumor-antibiotic agents! that possess an intricately function-
alized structure containing the unprecedented aziridino[1,2-¢]pyrrolidine ring system.2 Azino-
mycins A and B exhibit potent in vitro cytotoxic activity and promising in vivo antitumor activity;3
the electrophilic epoxide and aziridine rings suggest that the azinomycins act by covalent cross-
linking of DNA.4 The azinomycins are attractive targets for synthetic efforts,> and we have
reported a synthesis of the intact C8-C13 1-azabicyclo[3.1.0]hexane substructure of the azino-
mycins.6.7.8 Herein, we report the stereoselective construction of 2, the C17-C21 epoxyacid seg-
ment of the natural product. Given the substantial body of literature on syntheses of 2,52,b.c,n,0 we
set synthetic efficiency and high enantioselectivity as preconditions for our work. Of particular
note is the effectiveness that is exhibited by our synthesis, particularly in comparison with exist-
ing routes.5a,b.¢.0,0 Qur routes to 2 relied on introduction of the epoxide using a Sharpless asym-
metric epoxidation/kinetic resolution of a racemic allylic alcohol ()-8 to provide (28,3S)-(-)-2. This
reaction occurred with reversal of the expected sense of enantioselection.
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Existing syntheses of the five-carbon epoxide substructure of the azinomycins are lengthy
and/or inefficient. A synthesis by Armstrong and co-workers5n required eight steps, and proceeded
in only 4% overall yield. A synthesis by Shibuya, et al.5b starting from D-fructose required 11
steps, and a more recent publication by Shishido, et al.,5¢ which set the C18 and C19 stereogenic
centers using a known Sharpless kinetic resolution of divinyl carbinol, reported a difficult four-
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step 39% olefin-to-carboxylate conversion, one step of which took 10 days to reach completion.
Konda, et al.5a reported a synthesis of this epoxide similar to our present work, but in low yield
(< 21%) and with poor stereoselectivity (43-73% ee), which necessitated a final HPLC purification
to obtain material of useful enantiomeric purity. After the completion of our work, a six-step syn-
thesis of 2 appeared that was based on a Sharpless asymmetric dihydroxylation, and was achieved
in 27% overall yield.5° In comparison to published work, our synthesis of the C17-C21 epoxide por-
tion of the azinomycins reported herein is short (4 steps), effectual (40% overall yield), and pro-
ceeds with 98% enantioselectivity.

Intermediate (+)-3 could be prepared by addition of 2-propenylzinc chloride (4¢) to benzyl
glyoxylate (5),9 in a reaction that occurred with complete selectivity for the aldehyde carbonyl
group. We found that treatment of glyoxylate 5 with 1 equivalent of propenyllithium 4b (prepared
from 4a and 2 equiv ¢-BuLi) occurred with poor chemoselectivity even at ~78 °C,10 whereas zinc
reagent 4c¢ (prepared from 4b and 1 equiv ZnClg) added selectively to the aldehyde carbonyl group
of 5 (Etp0, 0 °C) to afford (£)-3 as the major reaction product in 60% yield. The instability of 5 lim-
ited the effectiveness of this route.
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Alcohol (+)-3 was also prepared effectively starting from known phenylselenoacetone (6)11
by olefination (NaH, THF, 25 °C) using the phosphonate prepared from benzyl chloroacetate and
trimethyl phosphite. This afforded (E)-712 as a single diastereomer. Oxidation of 7 (30% HO2,
CH3Clg, 25 °C) and spontaneous [2,3] sigmatropic rearrangement of the intermediate selenoxide
afforded (+)-3 in 98% yield.
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An even simpler and more effective preparation of (+)-3 that avoided toxic selenium
reagents was achieved starting from commercially available 3,3-dimethylacryloyl chloride (8).
Esterification by treatment with benzyl alcohol (pyridine) followed by epoxidation using m-chloro-
perbenzoic acid (CHzCla, 25 °C) afforded the racemic glycidic ester 913 in 92% yield. Acid-catalyzed
rearrangement of 9 by treatment with anhydrous p-toluenesulfonic acid in CH2Cl2 under carefully
controlled conditions (9 mol% p-TsOH, benzene, reflux, 6 h) effected rearrangement to allylic alco-
hol (£)-8 in 90% yield.14
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Sharpless asymmetric epoxidation15 of (1)-8 operating in the kinetic resolution mode with
D-(-)-diisopropyl tartrate (DIPT) and 0.6 equiv of ¢--BuOOH proceeded smoothly to afford the epox-
ide. Surprisingly, the product of this reaction was demonstrated to be the (2R,3R)-epoxide (+)-2 by
comparison of the optical rotation with that reported by Shibuya and co-workers for the enantio-
meric (-)-epoxide,5P which was prepared by a stereochemically unambiguous route starting from
D-fructose. Thus, Sharpless kinetic resolution proceeded to afford the opposite enantiomer of epox-
ide 2 than that predicted using literature precedent.15 When L-(+)-diisopropyl tartrate was used in
the kinetic resolution (10 mol% Ti(Oi-Pr)4, 15 mol% (+)-DIPT, 70 mol% ¢t-BuOOH, 3 A sieves,
—~20 °C, 48 h), the desired (2S,39)-epoxide (-)-2 was obtained in 48% isolated yield with > 98% ee.16
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Overall, the three syntheses of 2 proceeded with excellent efficiency and high stereoselectiv-
ity (98% ee) in a total of only four steps from dibenzyl fumarate (16%), isopropenyl acetate (37%),
or 3,3-dimethylacryloyl chloride (40% overall yield), including the kinetic resolution step. The
exceptional result obtained in the Sharpless asymmetric epoxidation is postulated to be due to
coordination of the titanium by the proximal ester carbonyl,17.18 possibly altering the aggregation
state of the reactive complex. The origin of this effect is currently under investigation, and these
results will be reported separately.
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